11 research outputs found

    Revealing the time lag between slope stability and reservoir water fluctuation from InSAR observations and wavelet tools— a case study in Maoergai Reservoir (China)

    Get PDF
    Reservoir water fluctuation in supply and storage cycle have strong triggering effects on landslides on both sides of reservoir banks. Early identification of reservoir landslides and revealing the relationship between slope stability and the triggering factors including reservoir level and rainfall, are of great significance in further protecting nearby residents’ lives and properties. In this paper, based on the small baseline subset time series method (SBAS-InSAR), the potential landslides with active displacements in the river bank of Maoergai hydropower station in Heishui County from 2018 to 2020 were monitored with Sentinel-1 data. As a result, a total of 20 unstable slopes were detected. Subsequently, it was found through a gray correlation analysis that the fluctuation of the reservoir water level is the main triggering factor for the displacement on unstable slopes. This paper applied wavelet tools to quantify the time lag between slope stability and reservoir water fluctuation, revealing that the displacement exhibits a seasonal trend, whose high-frequency signal displacement has an interannual period (1 year). Based on the Cross Wavelet Transform (XWT) analysis, under the interannual scale of one year, the reservoir water fluctuation and nonlinear displacement show a clear common power in wavelet. Additionally, a time lag of 65–120 days between slope stability and reservoir water fluctuations has been found, indicating that the non-linear displacements were behind the water level changes. Among the factors affecting the time lag, the elevation of the points and their distance to the bank shore show Pearson’s correlation coefficients of 0.69 and 0.70, respectively. The observed time lag and correlations could be related to the gradual saturation/drainage processes of the slope and the drainage path. This paper demonstrates the technical support to quantitatively reveal the time lag between slope stability and reservoir water fluctuation by InSAR and wavelet tools, providing strong support for the analysis of the mechanisms of landslides in Maoergai reservoir area.The work was supported by the National Natural Science Foundation of China (Grant No. 41801391), ESA-MOST China DRAGON-5 project (ref. 59339) and the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2020Z012) and Sichuan Science Foundation for Outstanding Youth (23NSFJQ0167)

    Automated Mapping of Ms 7.0 Jiuzhaigou Earthquake (China) Post-Disaster Landslides Based on High-Resolution UAV Imagery

    Get PDF
    The Ms 7.0 Jiuzhaigou earthquake that occurred on 8 August 2017 triggered hundreds of landslides in the Jiuzhaigou valley scenic and historic-interest area in Sichuan, China, causing heavy casualties and serious property losses. Quick and accurate mapping of post-disaster landslide distribution is of paramount importance for earthquake emergency rescue and the analysis of post-seismic landslides distribution characteristics. The automatic identification of landslides is mostly based on medium- and low-resolution satellite-borne optical remote-sensing imageries, and the high-accuracy interpretation of earthquake-triggered landslides still relies on time-consuming manual interpretation. This paper describes a methodology based on the use of 1 m high-resolution unmanned aerial vehicle (UAV) imagery acquired after the earthquake, and proposes a support vector machine (SVM) classification method combining the roads and villages mask from pre-seismic remote sensing imagery to accurately and automatically map the landslide inventory. Compared with the results of manual visual interpretation, the automatic recognition accuracy could reach 99.89%, and the Kappa coefficient was higher than 0.9, suggesting that the proposed method and 1 m high-resolution UAV imagery greatly improved the mapping accuracy of the landslide area. We also analyzed the spatial-distribution characteristics of earthquake-triggered landslides with the influenced factors of altitude, slope gradient, slope aspect, and the nearest faults, which provided important support for the further study of post-disaster landslide distribution characteristics, susceptibility prediction, and risk assessment.This work was funded by the National Key Research and Development Program of China (Project No. 2018YFC1505202), the National Natural Science Foundation of China (41941019), the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2020Z012), the project on identification and monitoring of potential geological hazards with remote sensing in Sichuan Province (510201202076888) and the Everest Scientific Project at Chengdu University of Technology (2020ZF114103)

    Monitoring and Predicting the Subsidence of Dalian Jinzhou Bay International Airport, China by Integrating InSAR Observation and Terzaghi Consolidation Theory

    No full text
    Dalian Jinzhou Bay International Airport (DJBIA) is an offshore artificial island airport, where the reclaimed land is prone to uneven land subsidence due to filling consolidation and construction. Monitoring and predicting the subsidence are essential to assist the subsequent subsidence control and ensure the operational safety of DJBIA. However, the accurate monitoring and prediction of reclaimed subsidence for such a wide area under construction are hard and challenging. This paper utilized the Small Baseline Subset Synthetic Aperture Radar (SBAS-InSAR) technology based on Sentinel-1 images from 2017 to 2021 to obtain the subsidence over the land reclamation area of the DJBIA, in which the results from ascending and descending orbit data were compared to verify the reliability of the results. The SBAS-InSAR results reveal that uneven subsidence is continuously occurring, especially on the runway, terminal, and building area of the airport, with the maximum subsidence rate exceeding 100 mm/year. It was found that there is a strong correlation between the subsidence rate and backfilling time. This study provides important information on the reclaimed subsidence for DJBIA and demonstrates a novel method for reclaimed subsidence monitoring and prediction by integrating the advanced InSAR technology and Terzaghi Consolidation Theory modeling. Moreover, based on the Terzaghi consolidation theory and the corresponding geological parameters of the airport, predicted subsidence curves in this area are derived. The comparison between predicted curves and the actual subsidence revealed by InSAR in 2017–2021 is highly consistent, with a similar trend and falling in a range of ±25 mm/year, which verifies that the subsidence in this area conforms to Terzaghi Consolidation Theory. Therefore, it can be predicted that in the future, the subsidence rate of the new reclamation area in this region will reach about 80 mm/year ± 25 mm/year, and the subsidence rate will gradually slow down with the accumulation of reclamation time. The subsidence rate will slow down to about 30 mm/year ± 25 mm/year after 10 years

    Monitoring and Predicting the Subsidence of Dalian Jinzhou Bay International Airport, China by Integrating InSAR Observation and Terzaghi Consolidation Theory

    No full text
    Dalian Jinzhou Bay International Airport (DJBIA) is an offshore artificial island airport, where the reclaimed land is prone to uneven land subsidence due to filling consolidation and construction. Monitoring and predicting the subsidence are essential to assist the subsequent subsidence control and ensure the operational safety of DJBIA. However, the accurate monitoring and prediction of reclaimed subsidence for such a wide area under construction are hard and challenging. This paper utilized the Small Baseline Subset Synthetic Aperture Radar (SBAS-InSAR) technology based on Sentinel-1 images from 2017 to 2021 to obtain the subsidence over the land reclamation area of the DJBIA, in which the results from ascending and descending orbit data were compared to verify the reliability of the results. The SBAS-InSAR results reveal that uneven subsidence is continuously occurring, especially on the runway, terminal, and building area of the airport, with the maximum subsidence rate exceeding 100 mm/year. It was found that there is a strong correlation between the subsidence rate and backfilling time. This study provides important information on the reclaimed subsidence for DJBIA and demonstrates a novel method for reclaimed subsidence monitoring and prediction by integrating the advanced InSAR technology and Terzaghi Consolidation Theory modeling. Moreover, based on the Terzaghi consolidation theory and the corresponding geological parameters of the airport, predicted subsidence curves in this area are derived. The comparison between predicted curves and the actual subsidence revealed by InSAR in 2017–2021 is highly consistent, with a similar trend and falling in a range of ±25 mm/year, which verifies that the subsidence in this area conforms to Terzaghi Consolidation Theory. Therefore, it can be predicted that in the future, the subsidence rate of the new reclamation area in this region will reach about 80 mm/year ± 25 mm/year, and the subsidence rate will gradually slow down with the accumulation of reclamation time. The subsidence rate will slow down to about 30 mm/year ± 25 mm/year after 10 years

    Revealing the Morphological Evolution of Krakatau Volcano by Integrating SAR and Optical Remote Sensing Images

    No full text
    On 22 December 2018, volcano Anak Krakatau, located in Indonesia, erupted and experienced a major lateral collapse. The triggered tsunami killed at least 437 people by the 13-m-high tide. Traditional optical imagery plays a great role in monitoring volcanic activities, but it is susceptible to cloud and fog interference and has low temporal resolution. Synthetic aperture radar (SAR) imagery can monitor volcanic activities at a high temporal resolution, and it is immune to the influence of clouds. In this paper, we propose an automatic method to accurately extract the volcano boundary from SAR images by combining multi-polarized water enhancement and the Nobuyuki Otsu (OTSU) method. We extract the area change of the volcano in 2018–2019 from Sentinel-1 images and ALOS-2 imagesThe area change and evolution are verified and analyzed by combing the results from SAR and optical data. The results show that the southeastern part of the volcano expanded significantly after the eruption, and the western part experienced collapse and recovery. The volcano morphology change experienced a slow-fast-slow process in the two years

    Utilizing a single-temporal full polarimetric Gaofen-3 SAR image to map coseismic landslide inventory following the 2017 Mw 7.0 Jiuzhaigou earthquake (China)

    No full text
    On August 8, 2017, a magnitude 7.0 earthquake struck Jiuzhaigou County in Sichuan Province, triggering numerous coseismic landslides. The prompt identification of these landslides is imperative for emergency rescue efforts and post-earthquake hazard assessments. Optical satellite and unmanned aerial vehicle (UAV) images are often obstructed by cloud cover and fog following earthquakes. In contrast, polarimetric synthetic aperture radar (PolSAR), unaffected by adverse weather conditions, emerges as an indispensable tool. However, the utilization of spaceborne single-temporal SAR for mapping the inventory of coseismic landslides is infrequent and encounters constraints due to several limitations. In this study, we analyzed the amplitude feature and polarimetric decomposition of multiple ground categories in a full PolSAR image, and proposed an automated method to accurately identify coseismic landslides using a single-temporal full PolSAR image. The coseismic landslide inventory following the Jiuzhaigou Earthquake was mapped and validated using high-resolution UAV images. Detailed analysis was conducted to identify error sources leading to omissions and false positives. Additionally, we evaluated various machine learning models to compare their performance with our proposed method. Finally, we conducted a comprehensive discussion on the strengths and weaknesses of different data types (PolSAR, optical satellite, and UAV) for coseismic landslide identification. Our results indicate that the proposed PolSAR-based method achieves high accuracy in coseismic landslide inventory mapping, offering an effective solution for timely post-earthquake emergency responses in complex environments and all weather conditions in the future

    Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements

    No full text
    Landslides are major geological hazards and frequently occur in mountainous areas with steep slopes, often causing significant loss. Interferometric Synthetic Aperture Radar (InSAR) has been widely used in landslide measurement over the last three decades. However, InSAR only can measure one-dimensional displacements (i.e. those in the radar’s line of sight (LOS) direction), resulting in the uncertainty between LOS displacement and the real slope displacement. In this paper, based on ascending and descending data from Sentinel-1 satellite, a wide-area potential landslide early identification was carried out using SBAS-InSAR in the whole of Mao County, a mountainous area in western Sichuan (China), with a total of 41 potential landslides successfully detected. Based on the quantitative analysis, the results show that the InSAR LOS measurement values are slope aspect and gradient-dependent. Finally, we innovatively derived a LOS displacement sensitivity map of InSAR in landslide measurement, revealing the relationship between LOS displacement, real displacements on slopes with arbitrary aspects and gradients, and SAR geometric distortion. This is a generalized finding useful for any slopes. It provides theoretical support to acquire and understand the real slope displacement from InSAR landslide measurement, which is vital to assist in correctly interpreting LOS displacement and carrying out subsequent quantitative geological engineering analysis
    corecore